THE INFLUENCE OF ZrO₂ ADDITIVES ON HIGH-TEMPERATURE OXIDATION OF Si₃N₄ CERAMICS

Kaidash O. N.

Institute for Superhard Materials named after V. N. Bakul NAS of Ukraine, Avtozavodska str., 2, Kyiv, 04074, tel. +38 (044) 4326848, E-mail: <u>ivv@ism.kiev.ua</u>

The oxidation behaviour of high-density Si_3N_3 - Al_2O_3 - Y_2O_3 - ZrO_2 materials has been studied at the temperature up to 1600 °C in air. Technological features of materials manufacturing from powders of plasma-chemical synthesis are given in [1]. It was found that ZrO_2 additives notably effect on the oxidation kinetics of silicon nitride ceramics. Small amount of ZrO_2 improved the oxidation resistance of Si_3N_3 -2% Al_2O_3 -5% Y_2O_3 material (below indicated as Si_3N_4), whereas its increase up to 10% considerably decreases the resistance to oxidation (indicated % by mass).

XRD analysis of the surfaces of Si_3N_4 -ZrO₂ samples oxidized at the temperature up to 1380 °C showed the presence of β -cristobalite (SiO₂), yttrium disilicate (Y₂Si₂O₇), tetragonal ZrO₂. Samples heated up to 1520 °C and 1600 °C do not reveal of β -cristobalite phase.

With rise of oxidation time the amount of $Y_2Si_2O_7$ and $ZrSiO_4$ is increasing and after 20 h of oxidation weakly change. On the contrary, the amount of ZrO_2 decreases with increase of oxidation time. After grounding of the oxide film the XRD analysis of the substrate under the scale showed Si_2N_2O .

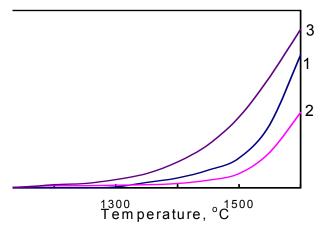


Fig. Weight gain as a function of temperature. Rate of heating is 20 grad/min: $1 - Si_3N_4$; $2 - Si_3N_4$ -5ZrO₂; $3 - Si_3N_4$ -10ZrO₂.

The results of the present investigation show that ZrO_2 additives effect on the oxidation kinetics

of Si_3N_4 -materials. ZrO_2 additives to Si_3N_4 form additional quantity of silicon oxynitride in starting material during sintering. XRD analysis confirms higher content of Si_2N_2O in Si_3N_4 - ZrO_2 -materials.

Apparently higher content of intergranular glass phase explains the different oxidation behavior of Si₃N₄ and Si₃N₄-ZrO₂. For Si₃N₄ increase of gain mass is observed only at 1300 °C, whereas for Si₃N₄-ZrO₂ it starts at 1100 °C (Fig.). First 3 hours of isothermal oxidation at 1380 °C of Si₃N₄ proceeds with loss mass. The surface of the scale was covered with grate number of pores formed by removal of N₂. High content of silicon oxynitride in intergranular phase, which is a barrier for oxygen permeation, results in that oxidation of Si₃N₄-ZrO₂ from the beginning closely followed parabolic kinetics. Whereas its low content in Si₃N₄ results in its oxidation with loss mass due to intensive removal of N2 until SiO2 film of sufficient thickness is formed. Further the gain mass is observed and its rate follows parabolic low.

Composition of silicon nitride ceramics is one of the decisive factors determining its oxidation behavior. ZrO_2 additives to Si_3N_4 promote the formation of intergranular glass phase and its quantity finally determines the oxidation behaviour of Si_3N_4 -ZrO₂-ceramics.

In oxidized Si_3N_4 -5ZrO₂-ceramics a continuous cristobalite layer forms on the glassy scale-ceramics interface providing a barrier to oxygen diffusion. Elevated content of Si_2N_2O in Si_3N_4 -5ZrO₂ ceramics promotes the formation of silicon oxynitride enriched layer on cristobalite-ceramics interface that decreases the rate of its oxidation in comparison with that of Si_3N_4 .

In Si_3N_4 -10ZrO₂ ceramics the formation of cristobalite continuous layer is not observed apparently due to high rate of Zr and Y migration from intergranular glass phase into the scale. Fast permeation of oxygen through the glassy scale controls high rate of Si₃N₄-10ZrO₂ oxidation.

1. Kaidash O.N., Danilenko N.V., Vereshchaka V.M. The influence of ZrO_2 on the formation of structure and properies of materials prepared from nanodispersed Si₃N₄-Al₂O₃-Y₂O₃ composites // J. Superhard Mater. – 1999. – 21, No. 6. – P. 63-70.